Some theoretical considerations on the degree of conversion, α_{max} , for various heating programs

E. Urbanovici ^a and E. Segal ^b

^a Research Institute for Electrotechnics, Sfintu Gheorghe Branch, Str. Jozsef Attila Nr. 4, Sfintu Gheorghe, Județul Covasna (Romania) ^b Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bulevardul Republicii Nr. 13, Bucharest (Romania)

(Received 22 January 1991)

Abstract

This paper introduces $\alpha_{t,\max}$ and $\alpha_{T,\max}$ for the values of the degree of conversion corresponding to maximum values of $d\alpha/dt$ and $d\alpha/dT$ respectively. It is shown that for constant heating rate $\alpha_{t,\max} = \alpha_{T,\max}$ and that in the general case $\alpha_{t,\max} \neq \alpha_{T,\max}$. For a heating rate of the form βT^a , $\alpha_{t,\max} \simeq \alpha_{T,\max}$.

INTRODUCTION

In nonisothermal kinetics physical and chemical changes are followed while temperature changes in time [1-3]. Thus

$$T = \theta(t) \tag{1}$$

or

$$t = \phi(T) \tag{2}$$

Relationships (1) and (2) actually define the same heating program, T and t being independent variables.

The heating rate is defined as dT/dt and is given by

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \theta'(t) \tag{3}$$

or

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{1}{\phi'(T)} = h(T) \tag{4}$$

Relationships (3) and (4) show that a variable heating rate can be expressed either as a function of t or as a function of T.

Starting from the classical isothermal kinetic equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = Af(\alpha) \exp\left(-\frac{E}{RT}\right) \tag{5}$$

0040-6031/91/\$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

where I is constant and with the classical conditions

$$A = \text{constant} \tag{6}$$

$$E = \text{constant}$$
 (7)

$$f(\alpha) = (1 - \alpha)^{n} \alpha^{m} [-\ln(1 - \alpha)]^{p}$$
(8)

$$n = \text{constant} \qquad m = \text{constant} \qquad p = \text{constant} \qquad (9)$$

the form (8) of $f(\alpha)$ being suggested by Šesták and Berggren [4], considering eqn. (5) as a postulated primary isothermal differential kinetic equation (p-PIDKE) and applying to it the classical nonisothermal change (CNC) using eqn. (3) or (4) [2,3], the following nonisothermal differential kinetic equations are obtained:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = Af(\alpha) \exp\left(-\frac{E}{R\theta(t)}\right) \tag{10}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{h(T)}f(\alpha)\,\exp\!\left(-\frac{E}{RT}\right) \tag{11}$$

As T and t are dependent variables, eqns. (10) and (11) are equivalent.

THE CONCEPT OF α_{max}

The α_{\max} value corresponds to the maximum reaction rate. As in nonisothermal conditions two variables (namely t and T) should be considered and one has to introduce the following values of α_{\max} : $\alpha_{t,\max}$ as a solution of the equation

$$\left(\frac{\mathrm{d}^2\alpha}{\mathrm{d}t^2}\right)_{\mathrm{max}} = 0 \tag{12}$$

and $\alpha_{T,\max}$ as a solution of the equation

$$\left(\frac{\mathrm{d}^2\alpha}{\mathrm{d}T^2}\right)_{\mathrm{max}} = 0 \tag{13}$$

Attempts will be made to answer the question as to whether $\alpha_{t,\max}$ equals $\alpha_{T,\max}$ or not, and of the eventual conditions for such an equality, which may arise, through the following considerations.

From the obvious relationship

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{\mathrm{d}\alpha}{\mathrm{d}T}\frac{\mathrm{d}T}{\mathrm{d}t} \tag{14}$$

and taking into account eqn. (4) one obtains

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{\mathrm{d}\alpha}{\mathrm{d}T}h(T) \tag{15}$$

From eqn. (15) through differentiation and division by dt one obtains successively

$$\frac{\mathrm{d}^2 \alpha}{\mathrm{d}t^2} \mathrm{d}t = \frac{\mathrm{d}^2 \alpha}{\mathrm{d}T^2} h(T) \,\mathrm{d}T + \frac{\mathrm{d}}{\mathrm{d}T} h'(T) \,\mathrm{d}T \tag{16}$$

$$\frac{\mathrm{d}^2 \alpha}{\mathrm{d}t^2} = \frac{\mathrm{d}^2 \alpha}{\mathrm{d}T^2} h^2(T) + \frac{\mathrm{d}}{\mathrm{d}T} h'(T) h(T) \tag{17}$$

From eqn. (17) for

$$h'(T) = 0 \tag{18}$$

or

$$h(T) = \beta = \text{constant}$$
(19)

one obtains

$$\frac{\mathrm{d}^2\alpha}{\mathrm{d}t^2} = \frac{\mathrm{d}^2\alpha}{\mathrm{d}T^2}\beta^2 \tag{20}$$

In this case relationships (12) and (13) are equivalent, thus

 $\alpha_{t,\max} = \alpha_{T,\max} = \alpha_{\max} \tag{21}$

For the general case when

$$h'(T) \neq 0 \tag{22}$$

eqns. (12) and (13) cannot be simultaneously fulfilled due to the term $(d\alpha/dT)h'(T)h(T)$, thus

 $\alpha_{t,\max} \neq \alpha_{T,\max} \tag{23}$

EQUATIONS TO EVALUATE $\alpha_{t, \max}$ AND $\alpha_{T, \max}$

As T and t are dependent variables any of them can be used in subsequent calculations. Taking into account that it is easy to pass from one variable to the other, the variable T will be used in the following.

The derivative of relationship (11) with respect to T is

$$\frac{\mathrm{d}^{2}\alpha}{\mathrm{d}T^{2}} = -\frac{A}{h^{2}(T)}h'(T)f(\alpha)\exp\left(-\frac{E}{RT}\right) + \frac{A}{h(T)}f'(\alpha)\exp\left(-\frac{E}{RT}\right)\frac{\mathrm{d}\alpha}{\mathrm{d}T} + \frac{A}{h(T)}f(\alpha)\exp\left(-\frac{E}{RT}\right)\frac{E}{RT^{2}}$$
(24)

Taking into account eqn. (11), eqn. (24) turns into

$$\frac{\mathrm{d}^2 \alpha}{\mathrm{d}T^2} = \frac{\mathrm{d}\alpha}{\mathrm{d}T} \left(\frac{A}{h(T)} f'(\alpha) \exp\left(-\frac{E}{RT}\right) + \frac{E}{RT^2} - \frac{h'(T)}{h(T)} \right)$$
(25)

By introducing this last result in eqn. (17) we obtain

$$\frac{\mathrm{d}^2 \alpha}{\mathrm{d}T^2} = \frac{\mathrm{d}\alpha}{\mathrm{d}T} \left(Ah(T) f'(\alpha) \exp\left(-\frac{E}{RT}\right) + \frac{E}{RT^2} h^2(T) \right)$$
(26)

Equation (25) taking into account condition (13) leads to

$$Af'(\alpha_{T,\max}) \exp\left(-\frac{E}{RT_{\max}}\right) + \frac{E}{RT_{\max}^2}h(T_{\max}) - h'(T_{\max}) = 0$$
(27)

where T_{max} in the temperature for which condition (13) is valid.

Correspondingly eqn. (26) with condition (12) leads to

$$Af'(\alpha_{t,\max}) \exp\left(-\frac{E}{RT^*}\right) + \frac{E}{RT^{*2}}h(T^*) = 0$$
(28)

where temperature T^* for which $\alpha = \alpha_{t,max}$ is given by

$$T^* = \theta(t_{\max}) \tag{29}$$

Besides relationships (27) and (28) derived from relationships (12) and (13) the integral relationships obtained from (10) and (11) will be considered. Thus

$$g(\alpha_{t,\max}) = A \int_0^{t_{\max}} \exp\left(-\frac{E}{R\theta(t)}\right) dt$$
(30)

$$g(\alpha_{T,\max}) = A \int_{T_0 \sim 0}^{T_{\max}} \frac{\exp\left(-\frac{E}{RT}\right)}{h(T)} dT$$
(31)

$$g(\alpha) = \int_0^\alpha \frac{\mathrm{d}\alpha}{f(\alpha)} \tag{32}$$

$$T_0 = \theta(t=0) \tag{33}$$

Applying in relationship (30) the variable change $t \rightarrow T$ one obtains

$$g(\alpha_{t,\max}) = A \int_{T_0 \sim 0}^{T^*} \frac{\exp\left(-\frac{E}{RT}\right)}{h(T)} dT$$
(34)

Using the second average theorem in eqns. (31) and (32) [5,6] one can write

$$g(\alpha_{T,\max}) = \frac{A}{h(T_1)} \int_0^{T_{\max}} \exp\left(-\frac{E}{RT}\right) dT$$
(35)

$$g(\alpha_{t,\max}) = \frac{A}{h(T_2)} \int_0^{T^*} \exp\left(-\frac{E}{RT}\right) dT$$
(36)

where $T_1 \in (0, T_{\text{max}})$ and $T_2 \in (0, T^*)$. The values of T_1 and T_2 depend upon the form of h(T).

Taking into account the approximation [7]

$$\int_{0}^{T} \exp\left(-\frac{E}{RT}\right) dT \cong \frac{RT^{2}}{E} \exp\left(-\frac{E}{RT}\right) Q\left(\frac{E}{RT}\right)$$
(37)

from eqns. (35) and (36) one obtains

$$g(\alpha_{T,\max}) = \frac{A}{h(T_1)} \frac{RT_{\max}^2}{E} \exp\left(-\frac{E}{RT_{\max}}\right) Q\left(\frac{E}{RT_{\max}}\right)$$
(38)

$$g(\alpha_{t,\max}) = \frac{A}{h(T_2)} \frac{RT^{*2}}{E} \exp\left(-\frac{E}{RT^*}\right) Q\left(\frac{E}{RT^*}\right)$$
(39)

From relationships (27) and (28) taking into account eqns. (38) and (39) it follows that

$$\frac{g(\alpha_{T,\max})f'(\alpha_{T,\max})}{Q\left(\frac{E}{RT_{\max}}\right)} + \frac{h(T_{\max})}{h(T_1)} - \frac{h'(T_{\max})}{h(T_1)}\frac{RT_{\max}^2}{E} = 0$$
(40)

$$\frac{g(\alpha_{t,\max})f'(\alpha_{t,\max})}{Q\left(\frac{E}{RT^*}\right)} + \frac{h(T^*)}{h(T_2)} = 0$$
(41)

For the condition (19) eqns. (40) and (41) turn into

$$g(\alpha_{\max})f'(\alpha_{\max}) = -Q\left(\frac{E}{RT_{\max}}\right)$$
(42)

a relationship which was also obtained by other authors [8].

In another paper [9] the values α_{\max} for various functions $f(\alpha)$ have been determined. It is beyond the scope of this work to calculate α_{\max} for various forms of $f(\alpha)$. The first utilization of conditions (12) and (13) in nonisothermal kinetics with constant heating rate is due to Kissinger [10].

As relationships (40) and (41) contain $h(T_1)$ and $h(T_2)$, these cannot be used to evaluate $\alpha_{T,\max}$ and $\alpha_{t,\max}$.

Nevertheless without demonstration one has to admit intuitively the following:

(1) If

$$\frac{h(T_{\max})}{h(T_1)} \gg \frac{h'(T_{\max})}{h(T_1)} \frac{RT_{\max}^2}{E}$$
(43)

then

$$T_1 \simeq T_2 \tag{44}$$

$$T_{\max} \simeq T^* \tag{45}$$

$$\alpha_{T,\max} \simeq \alpha_{t,\max} \tag{46}$$

(2) There is an infinity of heating programs h(T) which fulfil condition (43) and

$$\frac{h(T_{\max})}{h(T_1)} \simeq 1 \tag{47}$$

$$\frac{h(T^*)}{h(T_1)} \simeq 1 \tag{48}$$

Thus $\alpha_{T,\max} \simeq \alpha_{t,\max}$ equals approximately, the α_{\max} value given by eqn. (42).

APPLICATIONS FOR $h(T) = \beta T^{a}$

In the general heating program given by

$$h(T) = \beta T^a \tag{49}$$

where β and *a* are constants, the a = 0 value corresponds to the linear program, the a = 1 value to the exponential one and a = 2 value to the hyperbolic program.

Relationships (31) and (34), taking into account eqn. (49), turn into

$$g(\alpha_{T,\max}) = A \int_0^{T_{\max}} \frac{\exp\left(-\frac{E}{RT}\right)}{\beta T^a} dT$$
(50)

$$g(\alpha_{t,\max}) = A \int_0^{T^*} \frac{\exp\left(-\frac{E}{RT}\right)}{\beta T^a} dT$$
(51)

In these cases there is no need to introduce the temperatures T_1 and T_2 as the integrals from eqns. (50) and (51) can be calculated with good precision [7]. Thus

$$\int_{0}^{T} y^{r} \exp\left(-\frac{E}{Ry}\right) dy \cong \frac{R}{E} T^{r+2} \exp\left(-\frac{E}{RT}\right) Q_{r}\left(\frac{E}{RT}\right)$$
(52)

where if

$$\frac{E}{RT} = x \tag{53}$$

 $Q_r(r)$ is given by [7]

$$Q_r(x) = \frac{x+1}{x+3+r}$$
(54)

or more precisely

$$Q_r(x) = \frac{x^2 + x(4+r)}{x^2 + r(6+2r) + (r+3)(r+2)}$$
(55)

Using these approximations one obtains

$$h(T_1) = h(T_2) = 1 \tag{56}$$

and relationships (35) and (36) turn into

$$g(\alpha_{T,\max}) = \frac{A}{\beta} \frac{RT_{\max}^{2-a}}{E} \exp\left(-\frac{E}{RT_{\max}}\right) Q_{-a}\left(\frac{E}{RT_{\max}}\right)$$
(57)

$$g(\alpha_{t,\max}) = \frac{A}{\beta} \frac{RT^{*2-a}}{E} \exp\left(-\frac{E}{RT^*}\right) Q_{-a}\left(\frac{E}{RT^*}\right)$$
(58)

Taking into account eqn. (48), relationships (27) and (28) can be written as

$$Af'(\alpha_{T,\max}) \exp\left(-\frac{E}{RT_{\max}}\right) + \frac{E}{RT_{\max}^2}\beta T_{\max}^a - a\beta T_{\max}^{a-1} = 0$$
(59)

$$Af'(\alpha_{t,\max}) \exp\left(-\frac{E}{RT^*}\right) + \frac{E}{RT^{*2}}\beta T^{*a} = 0$$
(60)

From relationships (59) and (60) taking into account eqns. (57) and (58) one obtains

$$g(\alpha_{T,\max})f'(\alpha_{T,\max}) = Q_{-a}(x_{\max})\left(-1 + \frac{a}{x_{\max}}\right)$$
(61)

where

$$x_{\max} = \frac{E}{RT_{\max}}$$
(62)

and

$$g(\alpha_{t,\max})f'(\alpha_{t,\max}) = -Q_{-a}(x^*)$$
(63)

where

$$x^* = \frac{E}{RT^*} \tag{64}$$

Taking into account that in most cases $x \approx 20-30$ and that $Q_r(x)$ is a function with a very slow variation, one can conclude that the solutions of eqns. (61) and (63) are approximately equal; that is

$$x_{T,\max} \approx x_{t,\max} \tag{65}$$

as

$$-1 + \frac{a}{x} \simeq -1 \tag{66}$$

As previously stated we do not intend to calculate various values for α_{max} . Nevertheless we shall exemplify the use of relationships (61) and (53) for

$$f(\alpha) = 1 - \alpha \tag{67}$$

a	X _{max}						
	10	20	30	40	50		
0	0.571	0.599	0.609	0.615	0.618		
1	0.562	0.586	0.608	0.614	0.617		
2	0.551	0.593	0.607	0.613	0.617		

TABLE 1

Values of $\alpha_{T,\max}$ calculated for various values of a and x_{\max}

TABLE 2

Values of $\alpha_{t,\max}$ calculated for various values of a and x^*

а	x*					
	10	20	30	40	50	
0	0.571	0.599	0.609	0.615	0.618	
1	0.600	0.615	0.620	0.623	0.625	
2	0.632	0.632	0.632	0.632	0.632	

using a = 0, 1, 2 and various values of x_{max} and x^* . For $Q_r(x)$ the approximation (54) will be used. The results are listed in Tables 1 and 2.

The data given in Tables 1 and 2 show the validity of relationship (65) the value of α_{\max} being close to 0.60 mainly for $x \approx 20-30$. One has to note that there are not significant changes of $\alpha_{T,\max}$ and $\alpha_{t,\max}$ with *a*; thus these values are invariants at the heating programs given by eqn. (49).

CONCLUSIONS

(1) The maximum degrees of conversion $\alpha_{t,\max}$ and $\alpha_{T,\max}$ have been introduced.

- (2) For variable heating rates $\alpha_{t,\max} \neq \alpha_{T,\max}$
- (3) For constant heating rate $\alpha_{t,\max} = \alpha_{T,\max}$
- (4) For heating rates of the form βT^a , $\alpha_{t,\max} \simeq \alpha_{T,\max}$.

The quasicommon value of $\alpha_{t,\max}$ and $\alpha_{T,\max}$ does not depend practically on a.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 111 (1987) 335.
- 2 E. Urbanovici and E. Segal, Thermochim. Acta, 118 (1987) 65.
- 3 E. Urbanovici and E. Segal, Thermochim. Acta, 125 (1988) 261.
- 4 J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.
- 5 G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1968.

- 6 E. Urbanovici and E. Segal, Thermochim. Acta, 91 (1985) 383.
- 7 E. Urbanovici and E. Segal, Thermochim. Acta, 168 (1990) 71.
- 8 G. Varhegyi and T. Szekely, Thermochim. Acta, 57 (1982) 13.
- 9 J.P. Elder, Thermochim. Acta, 95 (1985) 41.
- 10 H.E. Kissinger, Anal. Chem., 29 (1957) 1702.