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This paper introduces at._ and cr,,, for the values of the degree of conversion 
corresponding to maximum values of da/dl and dLu/dT respectively. It is shown that for 
constant heating rate a,,_ = LX=,,,= and that in the general case OL,,~~ # aTmax. For a 
heating rate of the form BTU, at,_ = a,,,. 

INTRODUCTION 

In nonisothermal kinetics physical and chemical changes are followed 
while temperature changes in time [l-3]. Thus 

T= 6’(t) (1) 

or 

t=+(T) (2) 

Relationships (1) and (2) actually define the same heating program, T and t 

being independent variables. 
The heating rate is defined as dT/d t and is given by 

$ = e’(t) (3) 

or 

dT 1 -= dt m=h(T) 

Relationships (3) and (4) show that a variable heating rate can be expressed 
either as a function of t or as a function of T. 

Starting from the classical isothermal kinetic equation 

$ =Af(a) exp( - A) (5) 
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where I is constant and with the classical conditions 

A = constant (6) 

E = constant (7) 

f(a) = (1 - a)nam[ -ln(l - cu)]’ (8) 

n = constant m = constant p = constant (9) 

the form (8) of f(a) being suggested by Sest&k and Berggren [4], considering 
eqn. (5) as a postulated primary isothermal differential kinetic equation 
(p-PIDKE) and applying to it the classical nonisothermal change (CNC) 
using eqn. (3) or (4) [2,3], the following nonisothermal differential kinetic 
equations are obtained: 

$ =Af(a) exp - 
i i&J 

$S = j&./W exp( - A) 01) 

As T and t are dependent variables, eqns. (10) and (11) are equivalent. 

THE CONCEPT OF amax 

The LX,, value corresponds to the maximum reaction rate. As in noniso- 
thermal conditions two variables (namely t and T) should be considered 
and one has to introduce the following values of (Y,: at,_ as a solution of 
the equation 

(12) 

and ar,max as a solution of the equation 

l-1 d2a o 

dT2 _= (13) 

Attempts will be made to answer the question as to whether at,,, equals 
(Y~,,,~~ or not, and of the eventual conditions for such an equality, which may 
arise, through the following considerations. 

From the obvious relationship 

dcu dcr dT 
dt= 

-- 
dT dt 

and taking into account eqn. (4) one obtains 

dcu 
-*h(T) dt - dT 

04 

(15) 



307 

From eqn. (15) through differentiation and division by dt one obtains 
successively 

d*a 
dt2dt = $/z(T) dT+ -&h’(T) dT (16) 

d’ol d*a 
- = -h*(T) + &h’(T)h(T) 
dt* dT* 

(17) 

From eqn. (17) for 

h’(T) = 0, 

or 

h(T)=P=constant 

one obtains 

(18) 

0% 

d2cu d*a -=_p* 
dt* dT* 

(20) 

In this case relationships (12) and (13) are equivalent, thus 

ff t,= =CX T,max = %X%x (21) 

For the general case when 

h’(T) # 0 (22) 

eqns. (12) and (13) cannot be simultaneously fulfilled due to the term 
(da/dT)h’(T)h(T), thus 

%,nIax + %,max (23) 

EQUATIONS TO EVALUATE at,_ AND a,,,, 

As T and t are dependent variables any of them can be used in 
subsequent calculations. Taking into account that it is easy to pass from one 
variable to the other, the variable T will be used in the following. 

The derivative of relationship (11) with respect to T is 

d*cu -= 
dT* 

- j-$$‘(TM4 =p( - j&) + jf$f’W =p( - A)$$ 

+&f(d) exp( - &) j$ (24 

Taking into account eqn. (ll), eqn. (24) turns into 

(25) 
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By introducing this last result in eqn. (17) we obtain 

d2ar 
- = g( Ah(T)f’(a) exp( - &) + &h’(T)) 
dT2 

Equation (25) taking into account condition (13) leads to 

h(Lx) - h’(Tm,) = 0 

where T,,, in the temperature for which condition (13) is valid. 
Correspondingly eqn. (26) with condition (12) leads to 

Af ‘b-hnax )exP(-&)+&+(T*)=O (28) 

(26) 

(27) 

where temperature T * for which (Y = a, max is given by 

T* = 0(t,,) (29 

Besides relationships (27) and (28) derived from relationships (12) and (13) 
the integral relationships obtained from (10) and (11) will be considered. 
Thus 

d%,,,) = AlmaXexP( - j&J) dt 

(32) 

T,=8(t=0) (33) 

Applying in relationship (30) the variable change t + T one obtains 

dT 

Using the second average theorem in eqns. (31) and (32) [5,6] one can write 

da T,max) = h(T,) LiTm’Xexp( - A) dT 

g(a W=) = h(T,) L/oT*exp( - &) dT 

(35) 

(36) 

where Tl E (0, T,,) and T2 E (0, T *). The values of TI and T, depend 
upon the form of h(T). 



Taking into account the approximation [7] 

from eqns. (35) and (36) one obtains 

A RIP2 
b%,max) = h(T,) E --=P(-&)Q(&) 

(37) 

(38) 

From relationships (27) and (28) taking into account eqns. (38) and (39) it 
follows that 

daT,max)f’(aT,max 

Q(xq lnax 

For the condition (19) eqns. (40) and (41) turn into 

g(~max)f’(Smx) = -Q( &) (42) 

a relationship which was also obtained by other authors [S]. 
In another paper [9] the values cyrna for various functions f(e) have been 

determined. It is beyond the scope of this work to calculate (x,, for various 
forms of f(a). The first utilization of conditions (12) and (13) in nonisother- 
mal kinetics with constant heating rate is due to Kissinger [lo]. 

As relationships (40) and (41) contain h(l;) and h( T2), these cannot be 
used to evaluate E~,~= and CX,~~. 

Nevertheless without demonstration one has to admit intuitively the 
following: 

(1) If 

then 

Tl = T2 

T max zII”* 

Thus 

%,max = %,max 

(W 

(45) 

(46) 
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(2) There is an infinity of heating programs h(T) which fulfil condition 
(43) and 

(47) 

Thus ~~,rnax = qmax equals approximately, the a, value given by eqn. (42). 

APPLICATIONS FOR h(T) = j3Ta 

In the general heating program given by 

h(T) = j3T” (49) 

where /I and a are constants, the a = 0 value corresponds to the linear 
program, the a = 1 value to the exponential one and a = 2 value to the 
hyperbolic program. 

Relationships (31) and (34), taking 

dT 

dT 

into account eqn. (49), turn into 

(50) 

(51) 

In these cases there is no need to introduce the temperatures Tl and T2 as 
the integrals from eqns. (50) and (51) can be calculated with good precision 
[7]. Thus 

where if 

E -=x 
RT 

Q,(r) is given by [7] 

Q,(x)= x+1 
x+3+r 

or more precisely 

x2+x(4+r) 
Q’(x)= x2+r(6+2r)+(r+3)(r+2) (55) 

(52) 



311 

Using these approximations one obtains 

h(T*) = h(T,) = 1 

and relationships (35) and (36) turn into 

(56) 

!?(a ) T, max = $Fexp( -g--)Q_a( g--) 

g(%.max) = B A RT~zYzq3( - j$+L( &k) 

(57) 

(58) 

Taking into account eqn. (48), relations~ps (27) and (28) can be written 
as 

(59) 

(60) 

From relationships (59) and (60) taking into account eqns. (57) and (58) one 
obtains 

gb T.max)f’CaT,max I= Lbmax,i -1+ “) 
max 

where 

E 
x ““=:RT,, (62) 

and 

g(%,max)f’(%,max) = -Q-o(~*) 

where 

(63) 

E 
X -- 

*- RT* (64) 

Taking into account that in most cases x = 20-30 and that Q,(x) is a 
function with a very slow variation, one can conclude that the solutions of 
eqns. (61) and (63) are appro~mately equal; that is 

As previously stated we do not intend to calculate various values for amax. 
Nevertheless we shall exemplify the use of relations~ps (61) and (53) for 

f(ru) = 1 -a! (67) 

(65) 

(66) 
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TABLE 1 

Values of or,_ calculated for various values of a and x,,, 

a XIlX3X 

10 20 30 40 50 

0 0.571 0.599 0.609 0.615 0.618 
1 0.562 0.586 0.608 0.614 0.617 
2 0.551 0.593 0.607 0.613 0.617 

TABLE 2 

Values of qmax calculated for various values of a and x* 

X* 

10 20 30 40 50 

0.571 0.599 0.609 0.615 0.618 
0.600 0.615 0.620 0.623 0.625 
0.632 0.632 0.632 0.632 0.632 

using a = 0, 1,2 and various values of xmax and x *. For Q,(x) the ap- 
proximation (54) will be used. The results are listed in Tables 1 and 2. 

The data given in Tables 1 and 2 show the validity of relationship (65) the 
value of (Y,, being close to 0.60 mainly for x = 20-30. One has to note that 
there are not significant changes of CY=,~~ and at,max with a; thus these 
values are invariants at the heating programs given by eqn. (49). 

CONCLUSIONS 

(1) The maximum degrees of conversion ar,max and aT,max have been 
introduced. 

(2) For variable heating rates cxr,_ Z (Y~,~~ 
(3) For constant heating rate at,max = (Y=,~~ 
(4) For heating rates of the form /IT’, qmax = a=,_. 

The quasicommon value of (Y,,,, and (Y~,~~ does not depend practically on 
a. 
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